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CORRECTIONS

p 3, figure 1.3, text: mass 1 should be mass 2.
p 5, line 2-4 from the top should be changed to:

"The figure shows that the monopile is lightly damped. The first eigen frequency
was about 1.10 Hz in the first main direction.”.

p 15, figure 3.4 and p 32, figure 4.4:

The figures do not show the lumped mass model of the monopile. The stiffness
matrix of the lumped mass model was found from the flexibility matrix of a clamped
beam.

p 22, (4.6): w? should be w?.
p 23, after (4.11) should be added:

"where the weighted mode shape matrix is given by:
P13 @21)
P =
((I)IZ P9

In the report the weighted mode shape matrix is also given by & when distinction
from the unweighted mode shape matrix is necessary.”.

p 26, (4.19): = should be =~.

p 30, (4.30): ®;_3, should be @3, and O¢_2,41 should be Ozp_3.

p 31, (4.32): O3, should be O,_; and after (4.32) should be added:
"and o2 is the variance of the white noise input.”.

p 61, (3.14a) and (3.14b) should be (4.14a) and (4.14b).
Throughout the text: ”spring blade” should be ”leaf spring”
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The experimental work was carried out as a part of the project "Wave Induced
Vibrations” which is supported by the Danish Technical Research Council.

The experiment was performed in cooperation with Mr. L. Pilegaard Hansen,
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gaard has proofread the report.

Jakob Laigaard Jensen
Aalborg, September 1988.
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DYNAMIC ANALYSIS OF A MONOPILE MODEL

!

Jakob Laigaard Jensen
University of Aalborg
Sohngaardsholmsvej 57, DK-9000 Aalborg

Denmark

ABSTRACT

The dynamic characteristics of a 4 meter high monopile model have been investi-
gated. The monopile model had two concentrated masses and was described as a
lightly damped two degrees of freedom system.

The model was excited by a shaker table. The interaction between the model and
the shaker table had been examined and found acceptable. Sinusoidal signal and
random noise have been used as excitation signals. Beside forced excitation, free
vibration has also been used in the experiment.

The eigen frequencies and the damping ratios have been estimated. Different kinds
of identification methods have been used. Identification using ARMA models was
among those. The eigen frequencies were easily determined while the damping
ratios were found to be rather uncertain. The most reliable damping estimates
were determined from the free vibration and the estimated ARMA models. Some
of the uncertainties and deviations could be explained by insufficient frequency
resolution in the FFT analysis. Finally, mode shapes and transfer functions were
estimated and compared with theory. A good agreement was found.
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acceleration vector

white noise in the discrete time domaine
cross section

amplitude vector

autoregressive moving average model of order (2n,2n-1)
effective bandwidth

damping matrix

index for the base

critical damping coefficient

sampling interval in seconds

frequency interval in Hz

index for damped motion

dynamic amplification factor

linear elasticity coefficient

frequency in Hz

eigen frequency or discrete frequency
sampling frequency

force vector

impulse response function matrix

frequency response function or transfer function matrix

one sided discrete amplitude spectrum vector

stiffness matrix

length

mass per unit length

modal mass of mode i
concentrated or lumped mass
mass matrix

number of averages
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N number of sampled means
p periodic noise
De cylinder force
P phase response function matrix
RSS residual sum of squares
T correlation function matrix
S one sided spectral density matrix
So constant spectral density
t time
t; discrete time
T periode or time duration
T transposed vector or matrix
v vertical displacement vector
oy horizontal base displacement
u horisontal displacement vector
w white noise
constant
constant
) logarithmic decrement
y coherence function
€ strain
¢ damping ratio
0 rotation or angle
A eigen value
T pi
p density
o stress
w frequency (rad/sec)

A difference
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variation coefficient

moving average parameter

r
G
by summation
) mode shape matrix
®

autoregressive parameter or phase angel

Re[] real part of complex number

Im]] imaginary part of complex number

differentiation with respect to time
D difference operator in the discrete time domain

I absolute value

Small letter cases refer to signal in time domaine. Large letter cases refer to signal
in frequency domaine.







1 INTRODUCTION

The purpose of the experiment has primarily been to get some practical experience
in testing and analysing a vibrating structure. The analysis has mainly been
carried out from a system identification point of view.

A monopile with two concentrated masses was chosen as a model, see figure 1.1.
First of all because it was a simple system to test and to analyse. Secondly, it
was of importance that the system had some resemblance with the type of offshore
construction called a monopile or a monotower. Thirdly, because the lowest eigen
frequencies of the model had the same magnitude as the eigen frequencies of typical
marine structures.

\
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Figure 1.1. The monopile model and the excitation system.

The monopile model was made as a 4 meter high box profile (70-40-4 mm) with
the two masses of approximately 25 kg, see figure 1.3. The monopile model was
welded to a plate which was bolted to the base.
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The monopile was excited due to horizontal movement of the base. The movement
was created by a hydraulic cylinder, Schenck, type Pl 63H connected to a control
system. The excitation system is shown in figure 1.2. The excitation was only
made in one horizontal direction called the first main axis. The eigen modes in
this direction is labelled the first, the second, the third etc. eigen modes. The
eigen modes of the monopile model in the direction of the second main axis had
only minor importance. The second main axis was defined as orthogonal axis in
the plane of the base.

Figure 1.2. Excitation system of the base.

The shaker table system was chosen because of several reasons. First of all because
this kind of excitation removes the problem of getting a proper force excitation
with no constrained displacements. Secondly because it is difficult to place a
force excitation at a height of 4 meter. Although it might be a problem with the
shaker table that the model interacts with the base movement. Furthermore, some
vibration of second order might be introduced, because the base does not move
completely horizontally. This potential interaction problem has been investigated
as a part of the experiment, see chapter 3.

The base excitation was given by the control system of the cylinder. The control
system provided a sinusoidal shaped signal controlled by a given amplitude and
frequency. As another input signal the control system could be given any signal
from an external source. In the experiment the noise source from a HP3582A
Spectrum Analyzer was used. This was able to give white noise as well as peri-
odic noise. Besides, these kind of excitations a free vibration caused by a forced
displacement was used.

The base displacement were measured by a displacement transducer with an ampli-
fier, type HBM MGT 233 Digitalanzeiger. Two transducers were used to measure
the horizontal displacement, see figure 2.1.




Figure 1.3. The concentrated mass, mass 1.

The response of the monopile model was measured as accelerations or displace-
ments determined by integration of the acceleration signals. The accelerations
were measured by B&K accelerometers, type 8306 (with built in amplifier) and
the displacements were measured by B&K accelerometers, type 4370 with a charge
amplifier, type 2625. The response was mainly measured at the two concentrated
masses.

As a supplementary response information four strain gauges were placed at the
bottom of the monopile model. An amplifier, type HBM MGT 231 was used.

The force between the hydraulic cylinder and the base was measured by a force
transducer, type B&K 141069.

The excitation and response signals were recorded on a Teac Tape Recorder, type
R80. The signals were as a quick control written out on a HP plotter, type 7402A.

As a control and analyse tool a spectrum analyser, type HP3582A was used. In
the analyse of the data some of the signals were sampled, using a data acquisition
board, DT2828 and analysed using a personal computer,type IBM-AT.
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2 TESTING AND THE GENERAL RESULTS

In this chapter the testing and the general results will be outlined. Later in the
subsequent chapters the results will be presented and discussed in details.

The experiment began with a general calibration and control of the instrumen-
tation and excitation set-up. Afterwards the monopile was tested under different
excitation forms.

The standard instrumentation consisted of an accelerometer placed on each mass
and two displacement transducers. The latter were applied to measure the base
displacement, see figure 2.1.

As a control the accelerometers, the accelerometers were placed at the base where
the displacement transducers were placed. The acceleration as well as the displace-
ment signals from the accelerometers corresponded very well with the displacement
signal obtained from the transducers. This control was done for a sinusoidal signal
with frequencies from 0.5 to 10 Hz. Only the B&K type 8306 accelerometer was
able to measure frequencies from 0.5 to 0.9 Hz. It was however noticed that dis-
placement signal determined by integration of the acceleration signal was seriously
biased with respect to the phase.

As an investigation of the excitation setup it was tried to measure the vertical and
sidewards base movements. This was tried with accelerometers but it turned out
to be impossible because of the transversal sensitivity of these. Instead an arrange-
ment with the three displacements transducers was used. The investigation showed
no sidewards base movement, but some vertical movement especially at resonance
frequencies. This indicated a significant interaction between the monopile and the
base. This will be commented later in chapter 3.

Box profile 70x40x4

/

/Spring Blade

Spring Blade

Figure 2.1. Displacement transducers at the base.




2.1 Free Vibration

A free vibration of the monopile was created by a push with the hands. The free
vibration is shown in figure 2.2 for the displacement of mass 1. The figure shows
that the monopile is lightly damped with a first eigen frequency about 1.10 Hz in
the first main direction. The first eigen frequency in the second main direction
was also found by free vibration to about 1.65 Hz.

N ug (1)
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L

Figure 2.2. Free vibration for the displacement of mass 1 in the first main direction.

2.2 Sinusoidal excitation

The magnitudes of the first two eigen frequencies in the first main direction were
further investigated by a sinusoidal excitation of the base. The input frequency was
varied from 0.5 to 10 Hz. The first and second eigen frequency were determined
to be about 1.10 and 7.20 Hz respectively.

Transfer functions between the displacement of the masses and the base displace-
ment were determined from the recorded signals. The result for mass 1 is shown in
figure 2.3. The results were not quite reliable because of two reasons. Firstly, it was
found that it was difficult to tune the input frequency precisely because of some
sort of interaction between the monopile and the excitation system. Secondly, the
response was not quite stationary due to the low damping of the monopile. This
was especially a problem after having passed a resonance frequency. It was nec-
essary to wait a long time before stationary signals were obtained approximately
after having changed the input frequency. In fact the experience was, that the use
of sine sweep was in general not suitable for this construction.




[H()
100k
10t
i \
- \
A
N \
7/ \\\\_ ’,/ \\
= 1 1 i === - l____——l- | 1 b L fH
O0 1.0 20 30 40 50 6.0 7.0 80 9.0 iz}

Figure 2.3. Transfer function of the displacement of mass 1. Determined from a
sinusoidal excitation.

The phase between the displacement of the masses and the base displacement was
also measured for a sinusoidal excitation. This was partly done by a phasemeter
partly by a spectrum analyser. The phase function of the displacement of mass
1 is shown in figure 2.4. It was very difficult and uncertain to measure the phase
difference at resonances because the phase was not constant. This can probably
be explained by the reasons mentioned above.

The two first mode shapes in the first main direction were also measured by a
sinusoidal excitation as input. This was done with four accelerometers placed
along the monopile. The results are shown in figure 2.5. A further discussion of
the mode shapes is given in chapter 7.
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Figure 2.4. Measured phase difference between displacement of mass 1 and the
base displacement for a sinusoidal excitation.

Mode 1 * Mode 2
f=1.10 Hz f=7.19 Hz

Figure 2.5. Measured mode shapes in the first main direction with a sinusoidal
excitation as input.

2.3 Random excitation and FFT analysis

Random signals were also applied as base displacement and followed by a FFT
analyse using the spectrum analyser. The spectrum analyser was able to compute
the discrete amplitude spectre, the transfer function, the phase function and the
coherency function.
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White noise and periodic noise signals from the spectrum analyser were applied as
input signals. These signals were filtered before they were applied as input to the
control system of the hydraulic system. The cutoff frequency was typical 3 or 15
Hz. depending on the wanted response of the monopile. The noise source signal

after having passed the lowpass filter but before the hydraulic system is shown in
figure 2.6.

A X(f;) [mv]
0.040 -

0.035
0.030 -
0.025 -
0.020

0.015

0.010

0.005 -

0 | | | | | | 1 | 1 '>f~[HZ]
0 25 5 75 10 125 15 175 20 22.5 25 !

Figure 2.6. Frequency analysis of periodic noise having passed a 12 Hz lowpass
filter.

The difference between white and periodic noise is that the periodic noise is created
as a random signal with a period corresponding to the sampling time of the time
series given by the chosen frequency area of the spectrum analyser. The finite
length of the time series means a finite resolution of the input spectrum due to the
relation Af = #. The white noise signal is different because it has a substantial
longer period and therefore an input spectrum with an almost infinite resolution.
This difference means two things. Firstly, the smaller period of the periodic noise
means that averaging is not so urgent as for real white noise. Secondly, the finite
resolution of the input spectrum of the periodic noise means that there is a risk that
narrow banded responses will not be properly stimulated. Both noise sources have
been applied in the experiment because of their advantages and disadvantages.

The use of frequency analysis in the experiment made it important to be aware




on the following points :

1. Stationary input and output.

2. Choice of window functions in the FF'T analysis.
3. Sufficient frequency resolution.

4. Sufficient averaging of the FFT data.

Point one was easily obtained because the input source and the system were sta-
tionary when the input was white or periodic noise.

The proper choice of a window function depended on the input signal. If the white
noise source was applied, a Hanning window was chosen. If the periodic noise was
applied a uniform window was used.

100 \ [HI (f)
BW = 12 mHz
—————— BW=z= 30 mHz
osl T BW = 60 mHz
——— BW=120mHz
50 -
25 |- Il
H
/-'.7::.
0 ] M o . L > §[Hz]
0.50 0.75 1.00 1.25 -1.50 1.75 2.00

Figure 2.7 Transfer function between acceleration of mass 1 and the base dis-
placement for different choice of frequency resolution. Excitation source: White
noise.

The critical point in the use of frequency analysis was the frequency resolution.
This was the case because the monopile was very lightly damped. The importance
of frequency resolution is illustrated in figure 2.7, where the transfer function be-
tween acceleration of mass 1 and the base displacement is shown. The figure shows
the influence of different frequency resolution given by an effective bandwidth. It
is seen that at least a resolution of 30 mHz. was a necessary. This level of resolu-
tion was only obtainable for frequencies under 2.5 Hz. An effective bandwidth of
60 mHz was applied for frequencies above 2.5 Hz. When the uniform window was
applied corresponding to periodic noise the resolution was a somewhat better but
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not sufficient. As a consequence the results must be used with care.

The averaging of the transfer functions was done as RMS averaging for the transfer
function and as ordinary linear averaging for the phase function. The number of
averages and resolution etc. applied in the frequency analysis are shown in table
2.1.

Input Response BW.ss Number of Filter cutoff
base displ. type Hz averages frequency hz
Periodic noise M; acc. 0.02/0.04 4/32 3/12
- M, acc. 0.02/0.04 8/32 3/12
- M, displ. 0.04 8 15
- M,displ. 0.04 8 15
White noise M acc. 0.06 16 15
- M, displ. 0.03/0.06 8 15

Table 2.1. The performed frequency analysis. See also enclosure 1.

Figure 2.8 shows an example of the determined transfer and phase functions for
the acceleration response of mass 2 with the base displacement as input. The
functions look very nice corresponding to a system of two degrees of freedom. It
should be noticed that the base displacement has been included in the measured
transfer and phase function, because the measured response also contained the
base movement.

The coherence function is also shown in figure 2.8. It expresses the correlation
between input and output. The figure shows that the coherence is low and fluc-
tuating from 0.0 to 0.5 Hz and from 4.48 Hz. In the region up to 0.5 Hz this is
due to the failure of the accelerometers in the low frequency region. At 1.5 Hz
the coherence drops suddenly. This is because an antiresonance is found at this
frequency. That means the response is low which means that signal noise leads to
the low coherence. From 4.48 Hz the fluctuating coherence is caused by insufficient
resolution. So the coherence function clearly indicates when something is wrong in
the analysis. The lack of resolution is also recognised in the figures of the transfer
and phase functions which show a fluctuating picture from 4.48 Hz and upwards.

The FFT results presented in figure 2.8 are rather typical results of the analysis
of the measurements. Therefore, it is necessary to take the FFT results with some
caution in the analysis of the measurements. Consequently the performed FFT
analysis is an important subject in the following chapters.
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Figure 2.8. The results of the FFT analysis of the acceleration response of mass 2
with periodic noise excitation.
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2.4 Fatigue of the monopile

During the last half of the experiment a sudden decrease in the eigen frequen-
cies was noticed. At the end of the experiment the reason was detected. A fatigue
crack had developed above the weld at the foot of the monopile, see figure 2.9. The
crack had grown more than half the way through the box profile of the monopile.
This explains the sudden decrease in the eigen frequencies. The importance of
this accident was investigated by a free vibration test. From this test eigen fre-
quencies and damping ratios were estimated, see chapter 5.5, 6.6 and 7.0 . The
fatigue occurrence means that the structure of the monopile was not stationary.
The interpretation of the results has therefore become a little more difficult and

uncertain than expected.

After having finished the experiment there is no doubt that the fatigue crack
mainly was caused by the sinusoidal excitations of the monopile. The excitation
level has been to high and could have been chosen to be considerable smaller.
However this is an experience which should be used in the future.

Figure 2.9. The bottom of the monopile where fatigue occurred.
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3 INTERACTION BETWEEN BASE AND MODEL

Some sort of interaction between the monopile model and the base was detected
early in the dynamic testing of the model. It was noticed that it was difficult to
choose an exact frequency as input frequency. Furthermore, it was found that the
second eigen mode had a very strong influence on the input signal. This is shown
in the discrete amplitude spectrum of the base displacement, see figure 3.1.

3.1 The state of equilibrium

As an investigation of this phenomena a force transducer, type B&K 141069 was
placed between the cylinder and the base. The purpose was to determine the
interaction between the monopile model and the base displacement. In this test
the base displacement, the cylinder force, and the acceleration of the two masses
were recorded. The test was performed with an input frequency corresponding to
first and second eigen frequency respectively. The signals were recorded on a tape
recorder.

0.05 Up(fi) Imm]

0.04

0.03

0.02

0.01

0.00 | | _ | 1 | | 1 i | I fl [HZ]
9 10

Figure 3.1. Discrete Amplitude Spectrum for the Base Displacement.

In figure 3.2 and 3.3 the recorded signals are shown for an input frequency cor-
responding to 1.10 Hz and 6.98 Hz respectively. It was noticed that the force
signal of the cylinder was not immediately stationary. The cylinder system clearly
needed some time to adapt to the dynamic response of the monopile model be-
fore a stationary situation had been created. Secondly the force signal was not
a pure sinusoidal signal. The displacement signal looked more like a sinusoidal
signal even though some disturbance could be recognized. The distortion of the
sinusoidal signal is probably due to the adaptation process between the cylinder
and the model.
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Figure 3.2. Recorded Signals at 1.10 Hz.
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Figure 3.3. Recorded Signals at 6.98 Hz.

M =306 Kg
M2=36,6 Kg
Mp=102,4 Kg

Kp=26,8N/m

Figure 3.4. Model of the dynamic system.

As a further investigation of the interaction problem a dynamic model of the hole
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system was considered, see figure 3.4. The model included the monopile model,
the mass of the base, the base springs and the cylinder force. The model was
assumed to be linear and no damping forces were assumed to be present. From
the three equations of motion the following relation has been obtained:

Mbi:b :Pc—kb.'tb —Mgi.l:'z _leél (31)

The phase differences between the four signals at the two resonances are shown
in table 3.1. They have been corrected for the phase distortion caused by the
measuring procedure. The phase difference between the two mass accelerations
corresponds to the two eigen modes.

From the time signals shown in figure 3.2 and 3.3 it is clearly seen, that the
signals hardly can been approximated by sinusoidal signals with given amplitudes.
However, it has been chosen to use the RMS-values of the spectre to estimate
an amplitude for a sinusoidal signal. The estimated amplitude is found as A =

\/2E[z?].

Frequency b, ®p, ®;, ®;,
Hz ° ° ° °
1.10 0 29 11 11
6.98 0 45-52 -152 24

‘Table 3.1. Phase differences between signals. Correction for phase distortion has
been made.

Frequency - E[z}] E|[P?] E[#%] E[z2]
Hz mm? N? (m/sy)” (m/32)2
1.10 0.4677 3238.6 1.6928 0.2838

(4.70) (70.4) (55.2) (27.0)
6.98 0.4140 22874.1 30.6897 29.7454
(179.2) (144.5) (211.4) (257.81)

Table 3.2. Mean square values. The numbers in ( ) are the corresponding force
amplitude (N). The force amplitude from the base spring was computed to 26.0 N
and 25.9 N for the frequencies 1.10 Hz and 6.98 Hz, respectively.
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As a measure of the deviation from equilibrium of the forces in (3.1) a ratio has
been applied. The denominator was chosen as the positive part of (3.1) when all
the terms were placed on the left side of the equality sign and the numerator was
the sum of the terms corresponding to the deviation from zero. From table 3.2 the
deviation from equilibrium of the forces has been found to be:

1.10 Hz: .
Myzy + My 4 M2y + kyzy — Pe — _05%
Myzy + M1z + Moo
6.98 Hz: . . .
M@y + My &y — Ma&a + kyzy — P _ _6.6%

Myzy + My,

The equilibrium equations are seen to be satisfied approximately. The deviations
might be due to the approximation of the signals to sinusoidal signals or damping
forces which have not been included in the model.

3.2 The vertical and rotational displacements

The interaction between the monopile model and the base was also considered in
relation to the vertical movement of the base. The vertical displacements were
measured by displacement transducers. It was impossible to use accelerometers
because of the transversal sensitivity of the applied type of accelerometers. The
vertical displacements were measured at three points of the base plate for the two
eigen frequencies 1.10 Hz and 7.20 Hz. The displacement signals were analysed
in the frequency domain. The amplitude spectrum for the displacement at a base
point is shown in figure 3.5 for three different input frequencies around the two
eigen frequencies. It is seen from figure 3.5 that the vertical displacement reach a
maximum when the input frequency corresponds to an eigen frequency. A spectral
peak at 5.04 Hz is found. The source to this peak is unknown. It might be due to
the way the displacement transducers were fixed to the ground.
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Figure 3.5 Discrete amplitude spectrum for the vertical displacement of the base
for different input frequencies.

Another thing to notice is the occurrence of spectral peaks at a multiple of the
input frequencies. This it is seen in figure 3.5 but is perhaps more pronounced
in figure 3.6, where the amplitude spectrum of the vertical mean displacement
is shown. The same characteristic peaks are found in almost any signal. If one
analyses the signal from a sine generator one finds also the same peaks. Because
it was possible to remove these peaks by a filter the conclusion is that the charac-
teristic peaks arise in the signal generator and not the spectrum analyser. That
is, the regulation system of the cylinder is the source to these peaks at a multiple
of the input frequency. However it can be concluded that these subharmonics are
without any importance in comparison with the energy at the input frequencies.
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Figure 3.6 Discrete amplitude spectrum for the vertical mean displacement of the
base at 1.10 Hz as input frequency.

The magnitude of the vertical displacement of the base has been estimated. This
has been done by approximating the amplitude spectrum, shown in figure 3.6
by a sinusoidal signal. This procedure was shown in the previous section. The
results are shown in table 3.3. The estimated amplitude for the vertical mean
displacement signal is seen to be significant, especially for the second eigen mode
where the ratio between the vertical and the horizontal displacement amplitude is
12%. The ratio under a static, horizontal displacement was found to be about 1%.
It follows that the second eigen mode gives a significant dynamic amplification in
agreement with the previously found results.

Frequency E[v?] Ay ATy Ay /AT
Hz mm? mm mm %
1.11 0.0062 0.03 0.97 3.0
7.20 0.0006 0.11 0.91 12.1

Table 3.3. Estimated amplitude for the vertical mean displacement.

The rotation of the base has also been investigated. The rotations about the two
main axes were measured as a displacement difference. The first and the second
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main axis were defined as the axis parallel with the primary base movement and
the orthogonal axis in the plane of the base respectively. The signals were also in
this case approximated by sinusoidal signals, see table 3.4. From the table it is
seen that the rotations are without any importance for the second main axis. The
rotations about the first main axis were even less.

Frequency E[dv?] Ady AO
Hz mm? mm °
1.11 0.003 0.08 0.0064
7.20 0.01 0.14 0.012

Table 3.4. The estimated amplitude for the rotations of the second main axis.

3.3 Conclusion

It can be concluded that some kind of interaction exists between the monopile and
the hydraulic control system. This is not surprisingly because there has of course
to be a state of equilibrium. So the control system has to adapt to the response
of the monopile.

The interaction process explains why it is difficult to tune the input frequency
around resonance. The response of the monopile is so strong that it simply con-
trols the displacement of the base. That is another reason not to use a sine sweep
excitation but a random excitation. The interaction effect causes also an increased
vertical displacement at resonance. This however, seemed not to be of great im-
portance. The point to be kept in mind is that the interaction means that an
adaptation process has to take place and this takes time. Consequently one has
to be aware of whether the signals have become stationary or not. If not this may
cause confusing and misleading results.
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4 MODELLING AND IDENTIFICATION

In this chapter the applied models and system identification methods will be in-
troduced. A detailed explanation and discussion will not be given. Further expla-
nation and discussion can be found in the given references.

A theoretical model is needed when an experiment is planned and performed. It
is necessary because some a priori knowledge is needed to make sensible tests and
interpretations of the test results. The latter may also be called system identifica-
tion.

This chapter will first give a brief explanation of the theoretical model and then
introduce the applied system identification methods. Finally two computational
models of the monopile model will be given.

4.1 General model

The general assumption has been that the monopile response can be described by
the system of equations:

Mi+Ci+Kz=71 (4.1)

Only translation degrees of freedom have been considered in the model and only
the bending stiffness has been taken into account.
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Figure 4.1. Base excitation of the system

In the experiment the excitation was mainly created by displacement of the base,
see figure 4.1. The measured response of the monopile was given by :

T=T+ g (4.2)
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where zp is the base displacement and g is a vector with elements of 1 for the
degrees of freedom parallel to the excitation direction. Otherwise the elements are
zero. In the present case no zero elements were applied.

The form of the excitation, f due to the base displacement can be found from the
Lagrange’s equation:

A(T+U)=D (4.3)

where T, the kinetic energy, U, the potential energy and D, the work of the
damping forces are given by:

_y My
="
;T Kz
2
D = —Czdzx
which gives after some manipulations:
f=—-Mzyg (4.4)

In the model given by (4.1) the damping forces are assumed to be velocity de-
pendent only. This has been generally accepted as a useful model although it
might deviate from reality in most cases. However the point is that it is a useful
model and this makes it an acceptable but not a perfect model. This is also why
proportional damping has been accepted as an assumption given as:

C =aM + K (4.5)
This assumption means that (4.1) can be transformed to :
Zi 4 2wilizi + Wiz = 4iif; (4.6)

where:
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Mz+EKz=0 (4.7)
z=2%% (4.8)
—T—== =
d Mo=1 (4.9)
===
& K& =(u?) (4.10)
:T::
® Cd= (2&),(,') (4.11)

Here the notation on the right side of (4.10) and (4.11) means a diagonal matrix.
Beside the use of base excitation free vibration has also been considered. Using
the proportional damping assumption one obtains:

2 = e~Giwit( AeiwiV/1=CTt | pe—iwin/1=CPty (4.12)
where A and B are determined by the initial conditions:

20) = T %(0)

30)=% #0)
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4.2 Two degrees of freedom model

The monopile has been considered as a two degrees of freedom system. This has
been possible because the eigen modes were clearly separated in the frequency area
from 0 to 10 hz. That meant that mainly the two bending modes in the excitation
direction were expected to be excited, all though two other bending modes existed
in the orthogonal direction. Therefore, the base excited system was described by :

(0 ) G)+(& 2) () 1) ()= (5ns) e

For the base excited two degrees of freedom system it is possible to obtain from
(4.4), (4.6) and (4.8) two transfer functions between the base displacement and
the response of the two masses. If a harmonic excitation is assumed frequency
considerations leads to:

Xl 1{11 I{12

X w1? —w? 4 2wt Wi — w? 4 2waw(al

X O Ky,

_—=— — 4.14b
X, w12 —w? + 2ww(ii W — w2 4 2wew(at ( )

where X; has been derived from the relation:

z; = X; exp (iwt)

and:

Ky =3} My + 1,%12M,
Kig = @3, M7 + 92851 M,
Koy = @129 My + 33, M,
Ko = ®91 P2 My + @2, M,

It is seen from (4.14) that if w; << wy and if the damping ratios are small, it will
be a good approximation to describe the transfer function in the neighbourhood
around the resonance frequencies only by one of the terms in (4.14a) and (4.14b).

From (4.14) follows the useful relations:
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2 D2 4.15
X, %Y (4.15)
X X 4

X, " % (4.16)
& = ﬁwz (4.17)
Xy X

In the experiment the displacements or the accelerations were measured corre-
sponding to (4.15) and (4.16) respectively. Equation (4.17) was applied in the
identification algorithm called circle fitting. In all cases the base movement was
included in the measured signals.

4.3 System identification

Five different system identification methods have been applied to estimate the
parameters in the theoretical model. All the methods use the single degree of
freedom assumption. That is a lightly damped system with well separated eigen
frequencies is assumed. For the actual model this is a good assumption.

The time domain as well as the frequency domain has been applied in the esti-
mation of the parameters in the theoretical model. The identification methods
have been based on the measured response at the two concentrated masses of the
monopile model and the excitation given by the base displacement.

Some of the identification methods have been based on the measured response
only. This has been possible in the case where the excitation was a white noise
signal or in the case where the model performed a free vibration.

Because the experiment has been performed in a laboratory the masses of the
model have been known. This information has been applied in one of the iden-
tification methods based on a lumped mass model. This may seem as cheating
a little but however, the world outside the laboratory provides also information
about the masses all though it might be uncertain. Therefore, an identification
method based on a known lumped mass model should not be underestimated.

In general estimates of the eigen frequencies have easily been obtained due to FFT
analysis whereas it has been possible only to obtain reliable damping estimates
when more refined identification methods have been used. As a consequence the
described methods concentrate on the estimation of the damping ratio.
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4.4 Identification by the logarithmic decrement
A free vibration gives information about the eigen frequency and the damping

ratio for the mode no. j if only this mode is excited. A variant of the logarithmic
decrement for this mode is then given by:

é(n) = ln(%) (4.18)

where the logarithmic decrement is a function of the cycle number given an am-
plitude for the oscillation number one. Using (4.12) one obtains:

2T

@2 fi)/1—¢°
= 2n(jn — 2n(; (4.19)

é(n) = (j(2nfj)(n — 1)

This corresponds to a straight line with the slope 27(; and the intersection 27 (;
with the ordinate axis if (;j << 1.0.

If the linear model is correct, the slope corresponding to the damping ratio can be
shown to be normal distributed with the variance:

, TN (In(4=) - @r¢n - 2n(;))’ 1

s = - (4.20)
N =2 SN n2— (XN n) /N

It can be noticed that the estimated mean value of the damping ratio and the
eigen frequency are independent.

4.5 Identification from peak values

If the masses are assumed known it is possible to determine the damping ratios
and the mode shapes from the dynamic amplification factors, D;; given for each
degree of freedom for each mass, see figure 4.2.
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Figure 4.2. The dynamic amplification factors for the response of the i’th mass.

The method assumes that the orthogonallity conditions hold, see (4.9). At the
eigen frequency number j the dynamic amplification factor is given by:

K;;
D;; = |2 (4.21)
for mass number i. This gives the linear relation:
2Dy, —2Dq, 0 (1 1
2Dy, 2D, o G |=11 (4.22)
M22D1y —2D1; —(My+ 52)/) \ @ 0

This system of equations gives the damping ratios and one element of the mode
shape matrix. The complete mode shape matrix can be obtained from the orthog-
onallity conditions. The above primitive identification method assumes a lightly
proportional damped system with well separated eigen frequencies. The weakness
of this identification method is that it requires a great frequency resolution if the
correct peak values have to be applied.
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4.6 Identification from peak shapes

From (4.14) one obtains by a single degree of freedom assumption for the j’te peak:

|Hi(f)| = 0T (4.23)
VU= F7 +ag2 e

where H;(f) is the transfer function between the acceleration of the i’th mass and
the base displacement. This equation can be rewritten as a straight line:

KL —(la=y (4.24)

where:

2 = 4P E sy

2

y= m(f)?((%)? 1)

z and y refers here to the coordinates obtained from the FFT data. It is seen that
the peak can be described by a straight line with the slope ¢ j2 and the intersection
with the y-axis K 12] However, both quantities are unknown together with the eigen
frequency. But since a straight line is assumed the procedure is just to variate the
eigen frequency until maximum correlation is obtained. Then the damping ratio
and the constant K;; can be determined.

The straight line model is only valid if the points are independent normal iden-
tical distributed around the straight line. If this is the case one can establish a
confidence interval for the square of the damping ratio, which is supposed to be
normal distributed. The variance of the slope is given by:

- — ; )
N2 S el = (T @) /N

S

where < y; > are the predicted values and y; and z; are measured values.

This curve fit method of the peaks of the transfer functions is superior to a method
like the half power bandwidth estimation because several points are applied.
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4.7 Circle fit

In stead of identifying the model from the information hidden in the transfer
function the information can be expanded to contain the phase function also.
This should give a better identification. The transfer and phase function can be
transformed into a real and imaginary part corresponding to the real and imaginary
parts determined from (4.14) and (4.17):

RorXir _ 21&":‘;‘(%{1)@(2%]”)2 (4.26a)
Xy ((2nf)" - (@nf)®) +4@rf;) R Enf)’

X' (2nf;)? - @nf)D) +42r ) ¢ 2n )

Notice the response is here given by the velocity of the masses. It can now be
shown that if the imaginary part is plotted against the real part, a circle will
appear, see figure 4.3. This plot is sometimes called a Nyquist plot. The single
degree of freedom assumption has been applied here. The radius of the circle can
be shown to be:

K
R=—21 4.27
1enG (%20
and the centre of the circle by:
- K;;
C =(572=5—=,0 4.28
Genng? 25)
A Im
fa
90/2 O > Re
o 1,
b

Figure 4.3. Circle fit.
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If the frequency intervals of the applied FFT data are constant in the given fre-
quency range, the damping ratio can be shown to be given by:

- (27 f2)? — (27 f3)?)
2027 ) (27 f.)Tan(©4/2) + (27 f3)Tan(04/2)) (4.29)

Gj

where Og, O, fa, f3, fj are given by figure 4.3. From each pair of data points a
estimate of the damping ratio can be computed. If the damping ratio obtained
from this method is assumed to be normal distributed, a confidence interval can
be determined.

The eigen frequency, f; can be estimated from the Nyquist plot by linear interpo-
lation between the two points with maximum angel difference.

The shown relationship has been programmed into a computer. The circle is
estimated by non-linear least square estimation. The single degree of freedom has
been applied but it is possible to modify the method to several degrees of freedom.
This is done as an iterative procedure where the influence of the neighbouring
modes is ”subtracted” from the mode of interest. This iteration process gives a
quick convergence with respect to the damping ratio.

The circle fit method is described in detail in /1/.

4.8 Identification using ARMA models

In stead of performing the system identification in the frequency domain using
FFT it is possible to obtain a model directly in the time domain from the sampled
data. This is done by estimating an ARMA model for the response with white
noise as input. Compared with the FFT analysis the advantage is that the model
is obtained in the time domain given by a set of model parameters. This means
for instance that an exact expression for the transfer function is obtained that is
a transfer function with infinite resolution. The eigen frequency and the damping
ratios can therefore be determined with great precision.

The ARMA model for a n degrees of freedom system with white noise as input is
given by an ARMA model of order (2n,2n-1), that is an ARMA(2n,2n-1) model:

Ti—P1Ti-1—P2Ti—2...01—2nTt—2n = @t —010;1—0204_5 - - O4_opn1104_2n41 (4.30)

The ®;’s and ©;’s are here real constants and z; is the sampled time series with a
constant sampling rate, dt. The a; is the discrete time series for an assumed white
noise input, where a; is independent normal identical distributed. The equivalence
of this model and the system with n degrees of freedom is due to the fact that the
same covariance function has been demanded for the discrete and the continuous
time domain.
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The ARMA model is found from sampled data using nonlinear regression. In the
analyse of the sampled data a Fortran standard routine has been applied /4/.

As mentioned above it is possible to determine an autospectrum for the measured
response from the estimated ARMA model. Because the input is white noise it
follows that:

H(f) = constant/ Sy, (4.31)

where the constant depends on the excitation level. It can be shown that S;, for
an ARMA(2n,2n-1) model is written as:

, . |e@r—DEMfdt _ g (2n-2)2m)fdti . . 92n|2

Szz = 20,°dl ; ; 2
le(2n)(27r)fdtz _ ¢16(2n—1)(27r)fdtz .. ¢2n|

(4.32)

where

: il

0= fE 52

From this analytical expression for a n degrees of freedom system it is possible to
obtain the eigen frequencies and the damping ratios exactly for the model. This
can for instance be done with the peak shape method with 1.00 as correlation
coefficient. It is however also possible to obtain the eigen frequencies and the
damping ratios directly from the estimated ARMA parameters, which have been
done in /2/.

The theoretical background for ARMA is described in /2/ and /3/.

4.9 Computational models

When planning the experiment and the system identification showed a need for a
priori knowledge about the monopile. This was provided first by a simple lumped
mass model with two degrees of freedom and later by a finite element model.
The two models were based on information about the masses and the applied box
profile. The result was information about the eigen frequencies and the mode
shapes.

The lumped masses were determined as the sum of the concentrated masses and
some contribution from the mass of the box profile. Mass 1 and mass 2 consisted
of 41 and % of the box profiles mass respectively, see figure 3.4. The stiffness was
determined from the flexibility matrix for a clamped beam. The lumped mass
model with two degrees of freedom is shown in figure 4.4.
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\

Figure 4.4. Lumped mass model.

The above lumped mass model corresponded to the monopile excited in the first
main direction. As a further investigation a lumped mass model was also made
for excitation in the second main direction. The results for the two lumped mass
models are shown in table 4.1.

1 Main direction 2 Main direction
fj hz 1.20 7.44 1.89 11.56
D)1 1.00 0.39 1.00 0.40
D)2 0.32 -1.00 - 0.32 -1.00

Table 4.1. Resulfs for the lumped mass models.

The finite element model consisted of a beam model with 96 degrees of freedom
connected with a plate model with 27 degrees of freedom. The plate model simu-
lated the foot plate of the monopile. The model is shown in figure 4.5. The finite
element program IMAGES /5/ was applied to determine the eigen frequencies and
the mode shapes. Ten modes were computed. The results for the first four eigen
frequencies are shown in table 4.2.

The results of the lumped mass models and the finite element model have been
applied partly as a priori information partly in the analyse and comparison of the
results obtained by system identification, see especially chapter 5,7 and 8.




1 Main direction 2 Main direction
fj hz 1.15 7.11 1.64 10.43
Q) 1.00 0.48 1.00 -
D(j)2 0.34 -1.00 0.37 =

Table 4.2. Results for the finite element model.

25.39kg

26.13kg

/beam elements

plate elements
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Figure 4.5. Finite element model with beam and plate elements. The weight of
the small masses of the monopile is 1.58 kg and the weights of a plate element is
0.22 kg and 0.44 kg. The box profile has the dimensions 70-40-4 with a length of

4 meter.
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5 IDENTIFICATION OF THE EIGEN FREQUENCIES

The eigen frequencies of the monopile were easily identified because the eigen
frequencies were clearly separated. That meant also that it only was the eigen
modes in the first main direction which were excited.

The monopile was assumed to be lightly damped which meant that the eigen
frequencies could be determined as the frequencies which gave the maximum am-
plification of the response. Consequently the magnitude of the eigen frequencies
was quickly estimated by a sine sweep from 0 to 10 Hz, where the amplification
was noticed by eyes and ears. The two first eigen frequencies in the first main
direction were found to be about 1.10 Hz and 7.19 Hz. respectively.

As an investigation of the uncertainty of the identification of eigen frequencies
different types of excitation and identification methods were applied.

5.1 Free vibration

A free vibration was created by making the monopile vibrate. This was done
by hand. After the free vibration had stabilized the displacement signals of the
masses were written out on a plotter. From the plot the first eigen frequency was
identified as 1.09 Hz.. This average value was somewhat uncertain due to the
visual estimation procedure.

5.2 Sine sweep

The amplification of the monopile due to a sinusoidal input was investigated in
the frequency range round the two eigen frequencies. The displacements of the
masses and the base were recorded for input frequencies from about 0.9 Hz to 8.0
Hz. From theses records transfer functions were found. The phase functions were
found using FFT analysis. The estimated eigen frequencies are shown in table 5.1

The sine sweep principal was found to be very time consuming due to the low
damping of the system. After each frequency shift, stationary response was only
obtained very slowly. That might have given some distortion of the found eigen
frequencies.

5.3 Noise excitation

A periodic or white noise excitation was applied to the base and the displace-
ment or the acceleration of the masses was measured. The corresponding transfer
functions were then determined by FFT. The peak shape method gave the eigen
frequencies as the peak frequency at which maximum correlation was obtained.
The results are shown in table 5.1, page 40 for different FF'T data.
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5.4 ARMA models

Given a white noise excitation input an ARMA model of the displacement response
of the masses was estimated.

From the estimated ARMA model it is possible to obtain the eigen frequencies
and damping ratios directly from the estimated ARMA parameters. However, in
the actual case it was chosen to use the estimated parameters to obtain a response
spectrum and due to the white noise excitation a frequency response function, see

figure 5.1.

AConst. xIHI
102;
101‘é
100';
10‘1"§
023 ; , : : —>flHz)

Figure 5.1. Frequency response function of mass 1. ARMA(14, 13) model esti-
mated from white noise response. Sampling rate 40 Hz.

The order of the ARMA model was chosen so that it was consistent with n degrees
of freedom system, that is an ARMA(2n,2n-1) model. Consequently even the most
simple identification method should give the correct eigen frequency (and damping
ratio) corresponding to the estimated ARMA parameters. In other words the
estimation error in this stage should be zero.

In the actual case the base displacement signal was only approximately white
noise due to several factors, see figure 3.1. Important factors have been effects
such as the filtering due to the hydraulic system and the interaction between the
model and the system. Furthermore, the measured mass displacement signals were
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distorted. The latter was due to integration of the acceleration signals obtaining
displacement signals and the failure of the accelerometers at the low frequency
region (less than 0.9 Hz.).

More important however, the theory of identification using ARMA model assumes
a white noise force signal. In the actual case the white noise was the base dis-
placement signal whereas the force spectrum was something like a fourth order
polynomials with minimum at 0 Hz. and increasing with frequency, see figure 5.2

a and b:

Sir = So(2rf)* (5.1)

This means that the white noise assumption will be only reasonable to assume
locally around the resonance peak if the system is lightly damped. Assuming white
noise with this violation means that the second eigen mode will apparently be the
dominating mode in the model and perhaps lead to very uncertain information
about the first mode.
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Figure 5.2. Top: Autospectrum of the base displacement. Bottom: Autospectrum
of the base acceleration.
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The estimation of the ARMA models was made using the NAG library, /4/. The
response signals, which were applied, were sampled with 40 and 60 Hz. for mass
1 and 2 respectively. Before sampling they were filtered with a cutoff frequency
about 12 Hz. .

The satisfactory model order was determined from the model error which was
given by the relative residue. When the model error had obtained a minimum the
model order was considered as being satisfactory.

In the actual case the sufficient model was determined to be an ARMA(14,13),
see 6.5. The theoretical sufficient model was supposed to be an ARMA(4,3) cor-
responding to two degrees of freedom. It is thought that the high model order is
due to the violated white noise. As mentioned above this can also explain why
the identification of the first eigen frequency only was possible at a relative high
model order.

The identified eigen frequencies from the ARMA(14,13) model are shown in table
5.1, page 40. It is seen that the estimates from the ARMA models of the two
samples agree within 0.15% which is very satisfactory indeed.

5.5 Conclusion

Table 5.1 shows in general that the eigen frequencies have been determined with
only small deviations. Among the identified eigen frequencies the deviation is less
than 3% .

It is seen from table 5.1 that the sine sweep results all give too small eigen frequen-
cies compared with the other results. The explanation might be that the obtained
response was not stationary because the sine sweep was performed too fast.

The results based on FF'T analysis show some deviation compared with each other.
Insufficient frequency resolution and averaging could be an explanation. However,
another explanation might be initial fatigue at the foot of the monopile model.
The FFT based results are shown in chronological order and show a decreasing
trend in the identified frequencies.

At the end of the experiment a fatigue crack was found at foot of the monopile
above the weld. It had grown more than half the way through the box profile. A
frequency analysis of a free vibration showed that the first and second eigen fre-
quency had decreased to 0.93 and 6.56 Hz respectively. This significant reduction
shows that the trend in table 5.1 could be due to fatigue. The effect of fatigue is
further commented in chapter 6.

The results from the ARMA models have been obtained at the same stage as FFT
analysis of the mass displacements. It is seen that the estimated eigen frequencies
are a little smaller than those determined from the FFT analysis.

The identified eigen frequencies can also be compared with theoretical results
found from a lumped mass model and a finite element model, see chapter 4. From
table 5.1 it is seen that the lumped mass model gives too high eigen frequencies
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corresponding to a maximum deviation about 9%. The finite element model gives
deviations smaller than 5%. In both cases this deviation is less for the second
eigen frequency. This magnitude of deviation must be said to be satisfactory.

The deviation between the identified eigen frequencies and the theoretical values
must be explained by the models. The most plausible explanation is that the
clamp beam assumption is an approximation to reality.

It can be concluded that the eigen frequencies have been identified successfully
within T1%. This is quite satisfactory although it is likely that the eigen frequen-
cies can be determined even more precisely for the given system.

The deviation between identification from measurement and theory is also ac-
ceptable bearing in mind that the applied theoretical model has not been very
sophisticated. More refined models would without doubt give better results.
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fi f2

(1) ()
Free vibration (average
frequency from plot) 1.09 -
Sinus sweep (peak frequency
of transfer function, mass 1) 1.09 7.17
Sinus sweep (peak frequency
of transfer function, mass 2) 1.08 7.19
Sinus sweep (phase shift of
phase function, mass 1) 1.10 7.19
Transfer function for dis-
placement of mass 1 (FFT),
periodic noise, (peak shape 1.117 7.203
method).
Transfer function for accel-
eration of mass 1 (FFT),
periodic noise, (peak shape 1.105 7.190
method).
Transfer function for accel-
eration of mass 1 (FFT),
white noise, (peak shape 1.089 7.168
method).
ARMA(14,13), mass 1
40 Hz sampling rate 1.1054 7.1921
ARMA(14,13), mass 2
60 Hz sampling rate 1.1070 7.1900
Lumped mass model 1.20 7.44
Finite element model 1.15 7.11

Table 5.1. The identified eigen frequencies in the first main direction.
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6 ESTIMATION OF THE DAMPING

While it is relative easy to explain the magnitude of eigen frequencies theoretically
it is considerably more difficult to explain the damping of a construction. It
is ”just” all the mechanisms that lead to an energy loss of a dynamic excited
structures. This means that identification is based on simple models which may
be far from reality. Therefore one should not be surprised to get uncertain and
somewhat confusing results.

The present structure is assumed to be lightly damped. The usual damping model
is chosen, consequently the system is supposed to be proportionally damped with
viscous damping. This is reasonably because the physics of the damping mecha-
nism is not fully understood. Furthermore the damping is supposed to be small
and consequently the level of modelling less important. On the other hand it is
clear that the price of a simple damping model is uncertain identification of the
damping. In the extreme case this may lead to absurd results such as a negative
damping ratio.

6.1 Free vibration

The method of the logarithmic decrement was applied to determine the damping
ratio. The monopile was excited by hand. The first eigen mode in the first main
direction was excited. After the free vibration had stabilised the displacement
signal of the mass 1 was written out on a plotter, see figure 2.2.

30 amplitude values corresponding to each fifth oscillation were applied to estimate
the damping ratio of the first eigen mode. The relative logarithmic decrement as
a function of the oscillation number is shown in figure 6.1.
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Figure 6.1. The relative logarithmic decrement of the first eigen mode in the first
main direction.

Figure 6.1 shows that a straight line fit very well to the sampled points. The cor-
relation is 0.9989. This is very satisfactory indeed and justify the chosen damping
model. The damping ratio is found to be:

(g = 0.108+ 0.002 % (95 % con fidence)

It is seen that the monopile is very lightly damped. More than 30 oscillations
could have been applied, but it is seen from figure 6.2 that convergence for the
damping ratio as well as the variance has already almost been obtained. The
variance may mainly be due to the visual determination of the oscillation values.
The weakly decreasing damping ratio may be due to the fact that the decrease
in the amplitudes became more and more difficult to measure as the amplitudes
became smaller. Another reason might be that the damping depends on the level
of oscillation.
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Figure 6.2. The damping ratio and the 95 % confidence interval as a function of
the number of applied points.

6.2 Peak values of transfer functions

The damping ratio can as shown in chapter 4 in be determined from the peak values
of the transfer functions. However, the overall standing problem is the estimation
of the correct peak values. This is only possible if the frequency resolution is
sufficient in the FFT analysis. Insufficient frequency resolution means that the
estimated peaks are too small and consequently the estimated damping ratios too
large.
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white noise periodic noise periodic noise

acc. mass 1 acc. mass 1 acc. mass 2
(1 0.0090 0.0034 0.0041
(o 0.0066 0.0040 0.0056

Table 6.1. Damping ratios identified from the peak values of the transfer functions.

The identified damping ratios are shown in table 6.1. Compared with each other
the results show a significant deviation. The damping ratios corresponding to the
first eigen mode are seen to be considerable higher than the one found from the
free vibration. This is without doubt due to insufficient frequency resolution which
have led to unreliable estimates of the peak values.

6.3 Identification from peak shapes.

The damping ratios are here found from the shape of the resonance peaks of the
transfer functions. The damping ratio is determined as the squared value which is
the slope of a straight line assuming the model is correct. The method is described
in chapter 4. The transfer functions are determined using FFT analysis.

Analysis Ti (q [
Hz %
Periodic noise 1.117 0.014 70-80
mass 1 displacement 7.203 0.0012 95-125
Periodic noise 1.105 0.0029 75
mass 1 acceleration 7.190 0.0027 100
White noise. 1.116 0.008 60-70
mass 1 displacement
White noise 1.089 0.0175 175
mass 1 acceleration 7.168 0.0052 70
White noise 1.113 0.011 145
mass 1 acceleration 7.180 0.0024 72

Table 6.2. Estimated eigen frequencies and damping ratios using the peak shape
method for various FFT results. T'¢2 is the variation coefficient of (2.

Table 6.2 shows the results using the peak shape method. The variation of the
estimated damping ratio is given by the variation coefficient of the squared value of
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the damping ratio. The results are seen to be very unreliable indeed. The variation
coefficient has at least a magnitude of 60-70 %. This is very unsatisfactory and
indicates some kind of error. The estimated damping ratio shows a great variation
depending on which FFT result was applied in the analysis. The results are useless.

The cause to the unreliable results are probably insufficient frequency resolution.
Furthermore, more averaging should probably have been made in the FFT analysis.

The fact that the identified damping ratios of the first mode are greater than the
value found from the free vibration supports the explanation regarding frequency
resolution. It should be mentioned that the spectrum analyser, HP3582A did not
provide a higher resolution.

6.3 The circle fit method.

Transfer and phase functions were obtained from measured mass acceleration and
base displacement. These functions were transformed to mobility data also given
by transfer and phase functions (”mobility” refers to mass velocity relative to base
acceleration). Finally the new transfer and phase functions were transformed to
a real and imaginary function. This transformation included removal of the base
movement which was contained in the measured response signal of the masses,
refer to chapter 4.1 .
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Figure 6.3. Circle fit. The acceleration of mass 1 with periodic noise excitation.
Re refers to Re[%] and Im refers to Im[%]

The circle fit method was now applied to obtain information about the damping
ratios. An example of a circle fit is shown in figure 6.3 based on data obtained
from periodic noise excitation. The radius and the centre of the two circles were
estimated from the mobility data. The circle in the right half plane corresponds
to the first mode and the circle in the left half plane corresponds to the second
mode. At first glance the two circle fits seem to be as expected according to the
theory in /1/: A large circle in the right half plane and a small circle in the left
half plane, corresponding to a lightly damped two degrees of freedom system with
clearly separated eigen frequencies. However, the damping estimation gives more
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or less absurd results.

Table 6.3 shows the results of the circle fit estimation. A different number of data
points has been applied to estimate the circle and the parameters. The applied
points were those centred around the resonance frequency. '

Number Circle fit f ¢ o¢
of points error Hz
21 0.0081 1.1208 -9.5049 0.5523
10 0.0113 1.1208 -2.1745 0.2922
3 0.0157 1.1102 0.0021 0.0008
21 0.0673 7.0823 0.0027 0.0107

Table 6.3. Estimated parameters from circle fit. Data:Acceleration of mass 1 with
periodic noise excitation. o : standard deviation.

It is seen that sensible results are obtained only for three points of the first mode.
In this case the damping ratio is positive and the estimated eigen frequency cor-
responds to previous estimates obtained by other methods, see chapter 5. The
estimated damping ratio becomes:

G = 0.00211_0.0016 % (95 % con fidence)

However, it is difficult to have much confidence in this result, because the esti-
mated damping ratio depends very much upon the number of applied data points.
Anyway, it can be noticed that the analysis of the free vibration gives an estimate
within the given confidence interval.

Using all data points for the second mode the estimated damping ratio becomes :

(= 0.0027+0.0210 % (95 % con fidence)

Obviously this is a very unreliable result and it is also seen from table 6.3 that the
estimated eigen frequency is incorrect.

The main reason why the circle fit method fails is insufficient frequency resolution.
It is seen from the figure that almost all data points are concentrated in an area of a
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small part of the estimated circle. A better frequency resolution would have spread
out the points on the circle, which would have given a better estimation of the
circle and consequently the eigen frequencies and the damping ratios. Furthermore
a better resolution would have meant a less distortion of the FF'T results.

Another point should also be mentioned. The circle fit method is different from
the other applied methods, because it uses the phase information. This is as well
a strength as a weakness. It is a strength because there is additional information
in the phase function which should be applied, but a weakness because the phase
function is more uncertain than the transfer function. The phase function due
to random signals is a little more unreliable because the phase function is not
unambiguous for each given frequency. Furthermore, the phase function can easily
be distorted by filters, amplifiers and integration of signals.

The problem about sufficient frequency resolution is characteristic for narrow
banded response processes as it is the case for the response of lightly damped
systems. The problem of the estimation of the damping ratio is illustrated in
figure 6.4.
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Figure 6.4. The damping ratio as a function of a given eigen frequency for differ-
ent data points around the first resonance peak. Data: Transfer function of the
acceleration of mass 1 with periodic noise excitation.

Figure 6.4 shows for each data point of the transfer function how the damping ratio
depends on the given eigen frequency. A theoretical transfer function would nat-
urally have given one intersection point of all the curves corresponding to a given
damping ratio. This is not the case for the experimentally determined transfer
function, and it is understood that a small distortion of the estimated eigen fre-
quency easily leads to wrong damping estimates which may become negative.
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The relation between damping ratio and eigen frequency is most sensitive for
lightly damped systems. Higher damping ratio will give less steep curves. For
lightly damped systems the figure shows that simultaneous estimation of eigen
frequencies and damping ratios might result in less sensitive damping estimates.

In the present case it can be concluded that the circle fit method is relative vul-
nerable towards the estimation of the eigen frequencies when the system is lightly
damped. It is clear that a more effective eigen frequency estimation is necessary
if the circle fit method is supposed to be applied for lightly damped systems.

6.4 Estimation using ARMA models

ARMA models have been applied to estimate the response spectrum of the mass
displacements. Due to a white noise assumption the damping ratios have been
estimated. As discussed in chapter 4 the white noise assumption is only an ap-
proximation because it is the white noise which is the base displacement while the
force spectrum is described by a polynomial of order four which increases in the
frequency interval.

As mentioned in chapter 4 the appropriate ARMA model of a vibrating system
with n degree of freedom should be an ARMA(2n,2n-1) model assuming the white
noise agsumption is acceptable. The order of the ARMA model was increased until
the relative residue was minimised and the system parameters had stabilized.

The damping ratios were estimated using the peak shape method on the amplitude
spectrum obtained from the ARMA model. This procedure gave no contribution
to estimation error because the ARMA model order corresponded to a vibrating
system. The correlation of the peak shape method was consequently 1.00.

In figure 6.5 and 6.6 the estimated damping ratios are shown as a function of the
model order. The relative residue (the model error) is also shown. The expected
model order was 4, but mainly due to the violated white noise the appropriate
model order is seen to be an ARMA(14,13) model. The relative residue obtains
it is minimum at 2n=14 and the damping ratios have become relative stabilized,
especially the damping ratio for the second mode.

The reason why the damping ratio for the second mode stabilizes so quickly is
probably the applied force spectrum. Due to the force spectral density increases
with the frequency as a polynomial of order 4, the second mode is much stronger
present in the response signal than the first one, which means that it is easier to
identify, refer also to 4.4. The damping ratio of the first mode is seen to stabilize
faster for the ARMA model of the response of mass 1 than the damping ratio
determined from the response of mass 2. That may be due to the fact that the
first mode is stronger represented in the response signal of mass 1 and consequently
also better estimated in the ARMA model. It should be mentioned that the same
tendency was recognized in the identification of the eigen frequencies.

The damping ratio corresponding to the ARMA(14,13) model is found to be:
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Mass 1, sampling rate 40 Hz.

¢1 = 0.00127

¢2 = 0.00065
Mass 2, sampling rate 60 Hz.

¢ = 0.00256

¢2 = 0.00045

The agreement between the results based on the response of the two masses does
not seem to be satisfactory, however, the statistical uncertainty has not been
estimated so this may be a wrong conclusion. It should be mentioned that the
damping ratio of mode 1 estimated from the response of mass 1 has the same
magnitude as the estimate found from the free vibration.

The most plausible explanation of the deviations is probably the one mentioned
above regarding the presentation of the modes, but the failure of the white noise
assumption does perhaps also lead to some kind of distortion of the resonance
peaks and consequently the damping ratios. The sampling rate might also be of
importance for the estimation results.
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Figure 6.5. Convergence of the damping ratio and the relative residue. ARMA
model based on the displacement of mass 1, sampling rate 40 Hz.
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Figure 6.6. Convergence of the damping ratio and the relative residue. ARMA
model based on the displacement of mass 2, sampling rate 60 Hz.

6.5 The effect of fatigue.

At a certain stage of the experiment a sudden decrease in the eigen frequencies
was noticed. At the end of the experiment the explanation was found. A large
fatigue crack had developed just above the weld, see figure 2.9. The crack had run
more than half the way through the box profile.

After the cracked had been recognized, a free vibration was performed in the di-
rection of each of the two main directions. This gave a new set of eigen frequencies
and damping ratios.

As mentioned in chapter 5 the eigen frequencies had decreased from 1.10 and 7.19
Hz to 0.93 and 6.56 Hz respectively for the modes in the first main direction. The
damping ratio for the first mode was found to have increased from :

¢, =0.101 i_ 0.002 % (95 % con fidence)
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to:

6= 0.559+0.016 % (95 % con fidence)

The relative logarithmic decrement was applied to estimate the damping ratios,
see figure 6.7. The free vibration in the second main direction gave for the first
mode the damping ratio:

(= 0.168+0.004 % (95 % con fidence)

corresponding to the eigen frequency, 1.68 Hz.
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main direction

——=—-Free vibration in second
main direction
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Figure 6.7. The damping estimation given by the logarithmic decrement before
and after fatigue.

It is seen that while the first eigen frequency dropped 15 % the corresponding
damping ratio increased almost 600 %. This shows that the damping ratio may
be applied to indicate fatigue.

It is seen from the figure that the estimation of the damping ratio also shows a
great correlation for the data after fatigue has been recognized. Still the damping
model seems adequate even though it is difficult to relate the open fatigue crack
with a viscous damping mechanism. The point may be that the damping is still
small and therefore easy to fit to any model.
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6.7 Conclusion

The estimation of the damping ratio has shown that it is a quantity which is very
difficult to identify. While the deviations between the estimated eigen frequencies
are less than 1%, the estimation of the damping ratio gives deviations which are
often larger than 100%. This is very unsatisfactory. However, the estimation from
the free vibration seems to give very reliable results within a 95 % confidence
interval of 2-3 %. This is indeed a very reliable estimation superior to all other
methods. The damping ratio of the first eigen mode was found to be 0.001. The
fact that the damping ratio is very small is the reason why some of the estimation
methods completely fail or give very unreliable results.

Besides, the damping estimate obtained from the free vibration by the logarithmic
decrement, the estimates obtained from the ARMA models are also considered
relatively reliable. One of the estimates obtained from the ARMA model corre-
sponds very well with the estimate from the free vibration. As a fact the method
does show some possibilities whereas the FF'T analysis has failed completely. The
failure of the FFT analysis is without doubt due to insufficient frequency resolu-
tion and perhaps to the numbers of averages. This have caused very uncertain
damping estimates which were also too high due to the insufficient resolution. In
the future higher demands must be made when FFT analysis is used as a tool.

Finally it should be mention the results of the experiment have shown that the
damping ratio can be sensitive with respect to the development of a fatigue crack.




56
7 DETERMINATION OF MODE SHAPES

The two mode shapes corresponding to the two lowest eigen frequencies in the
main direction have been estimated. They were determined directly by measure-
ment with a sinusoidal excitation and further more they were estimated indirectly
from the determined transfer functions. Finally the mode shapes determined from
the experimental results have been compared with computed mode shapes from
theoretical models.

It was possible to measure the lowest mode shapes because the model was a sim-
ple one. This was simply done by tuning the input frequency until resonance was
reached. The resonance frequency was determined by watching the response of the
model using eyes and ears. This resonance determination was sufficient because
the construction was extremely lightly damped. The mode shapes were measured
with four accelerometers placed along the monopile. Besides, the measured dis-
placement at four points the node in the second mode shape was found. This was
done by moving the accelerometers until no response was measured. The measured
mode shapes are shown in figure 7.1. A polynomial of order 4 has been'fitted to
the measured results to obtain a complete mode shape. The results from the finite
element model are also shown.
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Figure 7.1. Measured and computed(FEM model) mode shapes corresponding to
1.11 Hz and 7.20 Hz.

The mode shapes were also determined indirectly from the measured transfer func-
tions. If the excitation force had only been one force at mass 1 or 2 at a time it
would have been easy to compute the mode shapes directly from the peak values
of the transfer functions. However, due to the assumed orthogonallity condition
and known masses it was possible to compute the mode shapes and the damping
ratios from a system of equations for the transfer functions.

As mentioned in chapter 4 the equations to solve are shown to be:

2D11 —2Dq, 0 G 'l
9Dy 2D 0 & =11 (4.22)
%321)12 —2D12 —‘L_(M;EM ) o, 0

where D;; is the dynamic amplification for the displacement of mass i at the eigen
frequency no. j. The masses M; and M, are here lumped masses. In general
the lumped mass distribution has been found so that the orthogonallity conditions
were satisfied. From the data obtained from the FF'T results for the displacement
response with periodic noise excctation one gets the results shown in table 7.1.
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Together with the mode shapes determined from measurements, the results from
two theoretical computations based on a lumped mass model with 2 degrees of
freedom and a finite element model are also shown . The assumptions and the
general results of the two models are given in /4/. The results from the finite
element model are also shown in figure 7.1.

Measured Peak values FEM Lumped
(sinusoidal) (periodic noise) model mass model
[ 1.00 | 1.00 1.00 1.00
0.38 0.38 0.34 0.32
2, -0.53 -0.46 -0.48 -0.39
1.00 1.00 1.00 1.00

Table 7.1. Comparison of the estimated mode shapes.

Table 7.1 shows a good agreement between the results. The deviations between
the determined mode shapes are greatest for the second mode. The mode shapes
determined from peak values respectively FEM model give here a deviation about
13 %. The lumped mass model gives the purest agreement with the measured
results. The lumped mass distribution chosen in the lumped mass model and the
peak value model were the same but the results do not agree very well.

The results from the FEM model are also shown in figure 7.1. It is seen that the
deviations for the first mode indicate that the clamped beam assumption can be
the cause to some of the deviation. This potential model error may be due to
the development of the fatigue crack. This explanation agrees with the fact that
the FEM model gave a first eigen frequency of 1.15 Hz while the measured was
1.11 Hz. Furthermore, the test after the mode shape test definitely gave a fatigue
crack. This was noticed as a drop in the eigen frequency to about 0.9 Hz. So it
can be concluded that the monopile model during the experiment had some kind
of defect in the welded area which could be the cause of a smaller stiffness than
expected.

This fatigue explanation is perhaps also some of the explanation of the difference
between the results from the peak value determination and the measurements.
However, insufficient frequency resolution is just as likely an explanation. Finally
it must be remembered that the measured results also may have contained some
error. For instance it was noticed that it was difficult to tune the input frequency
exactly.
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8 ESTIMATION OF THE TRANSFER FUNCTIONS

The dynamic parameters of the monopile model were estimated in chapter 5,6 and
7. Given these parameters the purpose of this chapter is to compare the theoretical
and experimental transfer functions. However, before this is done, the mass and
stiffness matrix of the model are investigated.

8.1 Mass and stiffness modelling

The monopile is still considered as a two degrees of freedom system. The purpose is
now to obtain information about the mass and stiffness matrices from the measured
mode shapes which were presented in chapter 7.

It is assumed that orthogonallity conditions holds:

T:
M

)R
&2

=7 . (4.9)

From (4.9) it is possible to estimate a lumped mass model as well as the weighted
mode shape matrix. The weighted mode shapes are given by the relation :

Dy = B; 8.1
O = g 0 (8.1)

From (4.9) and (8.1) one obtains the relations:

Ml _ @22(1)12

My @381 (82)
\/M29 _ —Ml(bgl + MQ@%Q (8 3)
A/M11 M]q)%l + MZ@%Z '

Now, if (8.2) is inserted in (8.3) one obtains:

\/ 22 — D99 P192P9; /Py + PE, (8.4)
Poo®11D11/Po1 + B2, -

From (8.4) it is possible to obtain information about the ratio of the modal masses.
From the present measured mode shapes (8.2) and (8.4) give the results :

M,y
3z, = 07170 (8.5)
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\/_V:Z” = 1.1810 (8.6)
11

From the orthogonallity conditions, (4.9) and (8.5) the mass matrix can now be
found by iteration. The final result becomes:

- (25656 35?65) [kg] (8.7)

where the orthogonallity is given by:

<||

:T:: P
T (30.7100 0.0002) (k]

¢ M 0.0002  42.8300 \88)

and the weighted mode shape matrix by :

= 0.1805 0.0810 1
(I)_(O.0686 —0.1528)[k9 d (8.9)

Now it is possible to find the stiffness matrix of the 2 degrees of freedom system
due to the relations:

R

=

&R

Il

£
=t

|
I
re*lli
N
€
SN
iR

T

M (8.10)
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=M

=l

(wf)

Assuming the eigen frequencies to be 1.11 hz and 7.19 hz (transformed to rad/sec)
one obtains the stiffness matrix for the two degrees of freedom system :

= ([ 97834 —22468.3
K= (—22468.3 60851.1 )[N/m] (8.11)

This result can be compared with the stiffness matrix obtained from the flexibility
matrix of the box profile of the monopile:
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= 8955.0 —22387.5
K= <—22387.0 71640.0 ) LN ) (8.12)
This corresponds to the deviations:
= 85 04
A= <0.4 17.7) 7] (8.13)

The deviations are seen to be rather small and the result must be said to be
very satisfactory. This indicates that the two degrees of freedom assumption was
reasonable which it was also expected to be.

8.2 Transfer function models

The expression for the transfer function of two degrees of freedom system was
found in chapter 4 to be given by:

X1 I{I 1 A’l 2

— = — — 3.14
X w12 —w? 4+ 2ww(E W2 — w2 + 2wew(yt ( @)
X e I’

e J Ko MR : (3.14b)
X, w12 —w? + 2w WS — w? 4 2waw(at

where:

K11 = &, My + 81,81, M>

K12 = ®3 My + $32®821 M5

Ko = ®12%11 My + &3, M,

Ky = ®21 %22 My + 83, M
The theoretical transfer functions can now be computed with the knowledge of
the mass matrix and the weighted mode shapes which were found in chapter 8.1.
Values for the eigen frequencies and the damping ratios are also needed in the

expression of the theoretical transfer functions. The following values have been
used:

£ = 1.1054; hz
fa =7.1921; hz
¢; = 0.00127

¢, = 0.00065
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These values correspond to the ARMA(14,13) model used in chapter 5 and 6.

With these input parameters the theoretical transfer functions have been com-
pared with the results of the FFT analyses. The transfer function is here defined
as the mass response (including measured base movement) relative to the base
displacement.

The transfer functions for the displacement of mass 1 and mass 2 are shown in
figure 8.1a and 8.1b. Even though the experimental results show a large scattering
the agreement is reasonable. One reason to the scattering could be the use of the
periodic noise excitation source because this provides only a discrete input spec-
trum as mentioned in chapter 2. This means that almost no excitation existed on
certain frequencies which could lead to uncertain results, especially if the resolution
also is not quite sufficient. Another cause to the scattering could be insufficient
averaging. A large number of averages could be important because the response
signal is displacement signal which is obtained by integration of acceleration signal.
This integration may lead to uncertain results.

[HI[MYm] [HI [M/m]

104
3_
10 2 i g g T 1075 7 i g g i
a) flHzl b) flHzl

Figure 8.1. Transfer functions for displacement response with periodic noise excita-
tion. a) Mass 1, b) mass 2. BW=0.04 hz. 8 averages.K;; =1.2742, Ky, =-0.2735,
K31 =0.4843 and K3 =0.5160
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If one uses the acceleration response instead, the results become as shown in figure
8.2a and 8.2b. Here a better resolution has been used in the area from 0-2.5 hz.
This leads to considerable reduction in the scattering in this interval compared
with figure 8.1. Furthermore, the number of averages have been increased in the
upper frequency domain but without any success. However, the results are better
than those shown in figure 8.1. It is seen that the first resonance and the anti-
resonance are modelled rather well. This can be due to the better resolution or
the use of the acceleration response. The second resonance area does not show
any convincing agreement between theory and experiment but at least the eigen
frequency seems to be correct.
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Figure 8.2. Transfer functions for the acceleration response with periodic noise ex-
citation. a) Mass 1: 0-2.5 hz: BW=0.02 hz, 4 averages, 4.48-9.48 hz: BW=0.04 hz,
32 averages. b) Mass 2: 0-2.5 hz: BW=0.02 hz, 8 averages, 4.48-9.48 hz: BW=0.04
hz, 32 averages. K17 =1.2742, K15 =-0.2735, K15 =0.4830 and K55 =0.5160.

If the periodic noise excitation is replaced by white noise the result becomes as
shown in figure 8.3. Theory and experiment agree very well indeed even though
the resolution is much smaller, BW=0.06 hz. Furthermore in the upper frequency
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domain the scattering is also much smaller than before. This seems to confirm
that the periodic noise is the source to some of the scattering.

IHI [/s2]

10°g T 7 g T ) > f [Hz]

Figure 8.3. Transfer function for the acceleration of mass 1 with white noise
excitation. BW=0.06 hz, 8 averages. K;; =1.2742, K5 =-0.2735, K5; =0.4830
and Ky, =0.5160.

The characteristic phase function is shown in figure 8.4. 200 degrees have been
added to the phase values. The results correspond to the data used in figure
8.3, but it is seen that the deviation between theory and experiment is more pro-
nounced than in figure 8.3. Also the scattering seems to be bigger. The deviation
is thought to be due to phase distortion in the measurement system (filters, trans-
ducers, amplifiers etc.). The scattering may be due to the averaging procedure in
the spectrum analyser and the fact that random excitation does not give uniquely
determined phase function. However, the agreement is acceptable with the excep-




65

tion of the low frequency region where the deviation is remarkable large. This may
be due to a 360 degrees phase shift caused by phase distortion and noise in the
signals.
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Figure 8.4 Phase function of the acceleration of mass 1 due to white noise excita-
tion. 200 degrees added. BW=0.06 hz, 8 averages. K3 =1.2742, K1, =0.2735,
K3; =0.4830 and K3, =0.5160.
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8.3 Conclusion

In summary the comparisons between theory and experiment have given a good
agreement. It has shown that the mass and stiffness relations can be identified
quite well. Especially the transfer function has been estimated with success but it
has to be remembered that the good agreement, which has been seen by the eye
does not reveal the great uncertainty about the damping ratio estimated from the
FFT data.

Finally it can be noticed that white noise excitation seems to give more reliable
results than periodic noise excitation.
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9.0 CONCLUSION

The report has presented the results and the obtained experience of the experiment
with a monopile model which was excited by a shaker table.

The experience with respect to the shaker table excitation was that it provided
a very effective excitation of the model. The interaction between the excitation
system and the model was not without importance but seemed not to give rise to
serious problems. However, the interaction has shown that sinusoidal excitation
should be used with care because the interaction meant that the model more or less
controlled the excitation about resonance. The consequence was none stationary
signals. This was a problem which basic cause was that the model was very lightly
damped.

The random noise excitation did mainly provide excitation of the second eigen
mode because the force signal was much stronger around the second resonance.
Experiments in the future should provide a modified force spectrum with the
energy more equally distributed with respect to the frequency region of, interest.
It was also experienced that the use of the white noise source might give more
reliable results than the periodic noise source.

Another experience was that a too high excitation level led to fatigue in the model.
Especially the sinusoidal excitation was too strong. A lower excitation level should
and could have been chosen. The fatigue caused a decrease in the eigen frequencies
and the damping ratios about 20% and 600% respectively.

The eigen frequencies were estimated within 1% whereas the estimated damping
ratios were very uncertain. The most reliable results gave a variation coefficient
about 3% but the most common result was that the results deviated more than
100%. However, this deviation is thought to be due to insufficient frequency
resolution and perhaps also averaging in the FFT analysis.

The very reliable damping estimates obtained from the free vibrations shows that
the viscous damping model seems to be adequate. Even the damping estimates
obtained after fatigue had occurred were found to be very reliable. This indicates
that the damping model is rather flexible even when the damping mainly is due
to a crack.

The identification methods which failed were all based on FFT results. Conse-
quently it is difficult to make a fair comparison of the methods. However, it is
clear that a lightly damped system always will make a high frequency resolution
necessary if the damping ratio has to be estimated properly from FFT results.
That is why the ARMA models have been shown some interest in this report and
a certain amount of success has been obtained. Consequently it is also thought that
future research should contain the use of ARMA models in system identification
of vibrating systems.

The other estimation methods should not be rejected totally. Firstly, because
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many other systems will be more damped and the frequency resolution demands
will be less strict. Secondly, because the resolution problems in the present case
were caused by the limitations of the applied frequency analyser. It is thought that
a much better frequency analysis could have been performed applying a flexible
FFT package available on a personal computer. However, the applied frequency
analyser should not be totally underestimated because the analyser still will be an
effective control tool during experiments.

The mode shapes and the transfer functions have also been estimated. The results
have been very satisfactory. The agreement between theoretical and experimental
results has been noticed to be rather well. The system of linear second order
differential equations seems to provide an adequate model of the monopile model
with respect to the mass and stiffness relations. It is not possible to make any
conclusion about the damping model due to the uncertain results.

With respect to the future research the presented results have clearly shown that
the damping of a system is very difficult to estimate. Consequently the future
research must concentrate in the field of estimation of the damping and try to
provide more information about the nature of the damping.
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Response: Acceleration of mass 1. Excitation: Periodic noise. BW=0.02/0.04 hz.
Number of averages: 4/32. Filter cutoff frequency of the noise signal: 3/12 hz.
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Response: Acceleration of mass 2. Excitation: Periodic noise. BW=0.02/0.04 hz.
Number of averages: 8/32. Filter cutoff frequency of the noise signal: 3/12 hz.
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Response: Displacement of mass 1. Excitation: Periodic noise. BW=0.04 hz.
Number of averages: 8. Filter cutoff frequency of the noise signal: 15 hz.
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Response: Displacement of mass 2. Excitation: Periodic noise. BW=0.04 hz.
Number of averages: 8. Filter cutoff frequency of the noise signal: 15 hz.
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Response: Acceleration of mass 1. Excitation: White noise. BW=0.06 hz. Num-
ber of averages: 16. Filter cutoff frequency of the noise signal: 15 hz.
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Resonse: Displacement of mass 1. Excitation: White noise. BW=0.03/0.06 hz.
Number of average: 8. Filter cutoff frequency of the noise signal: 15 hz.
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